Nonparametric statistical testing of EEG- and MEG-data.

نویسندگان

  • Eric Maris
  • Robert Oostenveld
چکیده

In this paper, we show how ElectroEncephaloGraphic (EEG) and MagnetoEncephaloGraphic (MEG) data can be analyzed statistically using nonparametric techniques. Nonparametric statistical tests offer complete freedom to the user with respect to the test statistic by means of which the experimental conditions are compared. This freedom provides a straightforward way to solve the multiple comparisons problem (MCP) and it allows to incorporate biophysically motivated constraints in the test statistic, which may drastically increase the sensitivity of the statistical test. The paper is written for two audiences: (1) empirical neuroscientists looking for the most appropriate data analysis method, and (2) methodologists interested in the theoretical concepts behind nonparametric statistical tests. For the empirical neuroscientist, a large part of the paper is written in a tutorial-like fashion, enabling neuroscientists to construct their own statistical test, maximizing the sensitivity to the expected effect. And for the methodologist, it is explained why the nonparametric test is formally correct. This means that we formulate a null hypothesis (identical probability distribution in the different experimental conditions) and show that the nonparametric test controls the false alarm rate under this null hypothesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypothesis testing in distributed source models for EEG and MEG data.

Hypothesis testing in distributed source models for the electro- or magnetoencephalogram is generally performed for each voxel separately. Derived from the analysis of functional magnetic resonance imaging data, such a statistical parametric map (SPM) ignores the spatial smoothing in hypothesis testing with distributed source models. For example, when intending to test a single voxel, actually ...

متن کامل

Parametric analysis of oscillatory activity as measured with EEG/MEG.

We assess the suitability of conventional parametric statistics for analyzing oscillatory activity, as measured with electroencephalography/magnetoencephalography (EEG/MEG). The approach we consider is based on narrow-band power time-frequency decompositions of single-trial data. The ensuing power measures have a chi(2)-distribution. The use of the general linear model (GLM) under normal error ...

متن کامل

FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data

This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced an...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

معیاری نوین برای رتبه‌بندی مقاومت تخمین‌گرهای ارتباطات کانال‌های EEG/MEG در مقابل آرتیفکت هدایت حجمی

ﺩﺭ ﺩﺍﺩﻩﻫﺎی EEG/MEG، ﺁﺭﺗﻴﻔﻜﺖ ﻫﺪﺍﻳﺖ ﺣﺠﻤﻰ ﺑﻪ ﺻﻮﺭﺕ ﺗﺮﻛﻴﺐ ﺧﻄﻰ ﻟﺤﻈﻪﺍی ﻓﻌﺎﻟﻴﺖ ﻣﻨﺎﺑﻊ ﻣﻐﺰی ﺩﺭ ﻛﺎﻧﺎﻝﻫﺎ ﻣﺸﺎﻫﺪﻩ ﻣﻰﺷﻮﺩ. ﻳﻜﻰ ﺍﺯ ﻭﻳﮋﮔﻰﻫﺎی ﻣﻬﻢ ﺗﺨﻤﻴﻦﮔﺮﻫﺎی ﺍﻳﺪﻩﺁﻝ ﺍﺭﺗﺒﺎﻃﺎﺕ ﻣﻐﺰی، ﻣﻘﺎﻭﻣﺖ ﺑﻪ ﺁﺭﺗﻴﻔﻜﺖ ﻫﺪﺍﻳﺖ ﺣﺠﻤﻰ ﺍﺳﺖ؛ ﻳﻌﻨﻰ ﻫﺪﺍﻳﺖ ﺣﺠﻤﻰ ﻣﻨﺎﺑﻊ ﻣﻐﺰی ﻣﺴﺘﻘﻞ ﻫﺮﮔﺰ ﻧﺒﺎﻳﺪ ﻣﻨﺠﺮ ﺑﻪ ﺗﺨﻤﻴﻦ ﺍﺭﺗﺒﺎﻃﺎﺕ ﻣﻌﻨﻰﺩﺍﺭی ﺑﻴﻦ ﻛﺎﻧﺎﻝﻫﺎی EEG/MEG ﺷﻮﺩ. ﺗﺎﻛﻨﻮﻥ ﻫﻴﭻ ﻣﻌﻴﺎﺭی ﺑﺮﺍی ﻣﻘﺎﻳﺴﻪ ﺳﻄﺢ ﻣﻘﺎﻭﻣﺖ ﺗﺨﻤﻴﻦﮔﺮﻫﺎی ﻣﺨﺘﻠﻒ ﺍﺭﺗﺒﺎﻃﺎﺕ ﻣﻐﺰی ﺩﺭ ﻣﻘﺎﺑﻞ ﺁﺭﺗﻴﻔﻜﺖ ﻫﺪﺍﻳﺖ ﺣﺠﻤﻰ ﺩ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 164 1  شماره 

صفحات  -

تاریخ انتشار 2007